
Adopt Al Do not adopt its risks! 02/07/2024

A TUV SUD Venture

Context

As Al becomes business critical, it is ever important to navigate Al risks and regulation

Al is transforming the Industry

Al is critical for businesses to stay competitive

Emerging Al risks and Regulation

- Al introduces unique risks with potentially severe and widespread consequences
- Al risks require robust additional risk and quality controls to mitigate
- Intensifying global regulatory activities compel organisations to enhance compliance

Yet many

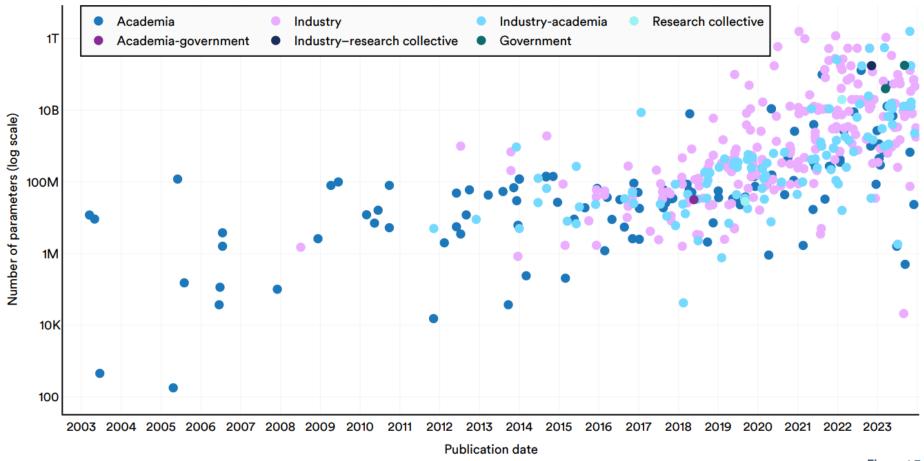
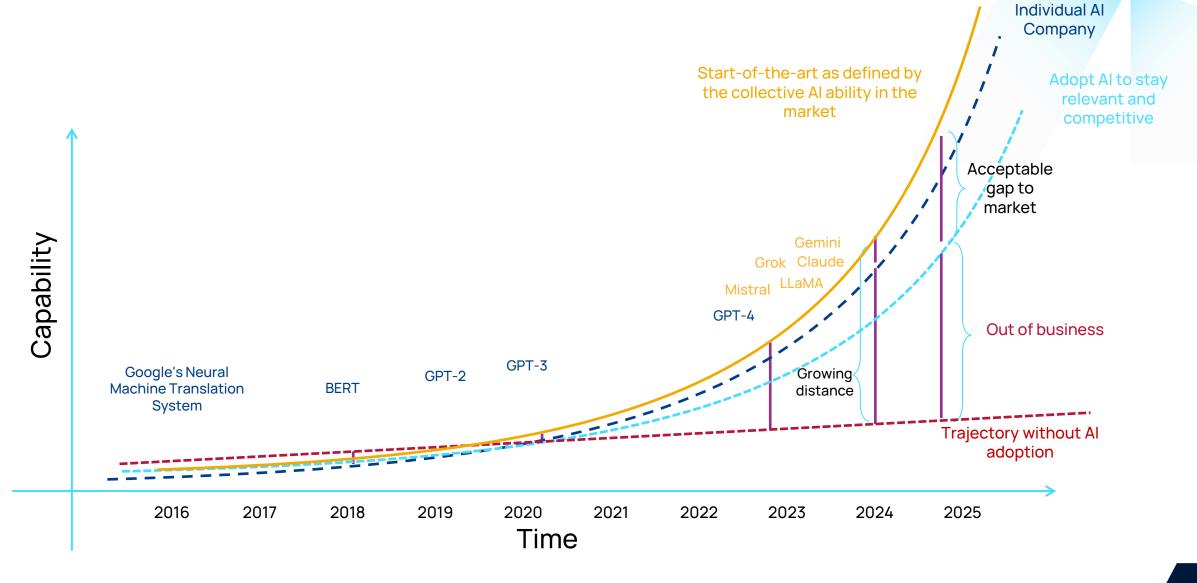
- Have limited knowledge of the specific risks associated with AI
- Lack knowledge on how to effectively manage Al-related risks and quality
- Do not have a standardised process to manage AI systems from procurement to adoption

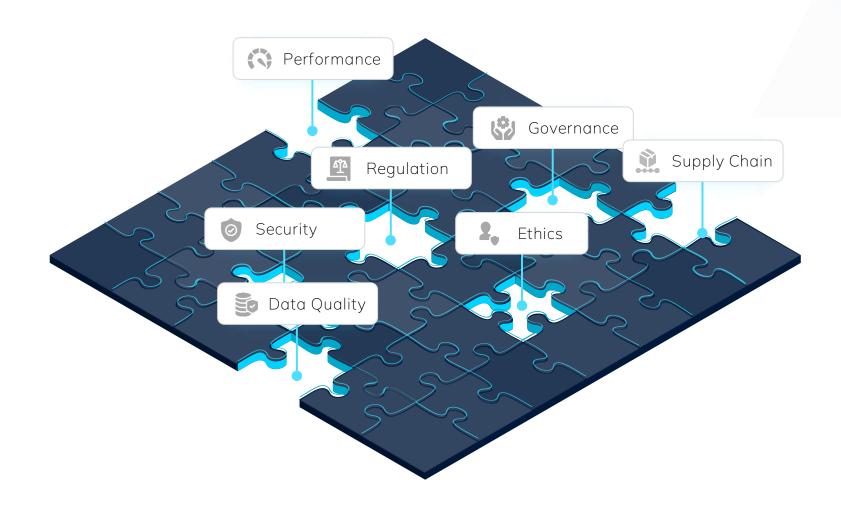
State of AI Report 2024

https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024.pdf

Number of parameters of notable machine learning models by sector, 2003-23

Source: Epoch, 2023 | Chart: 2024 Al Index report

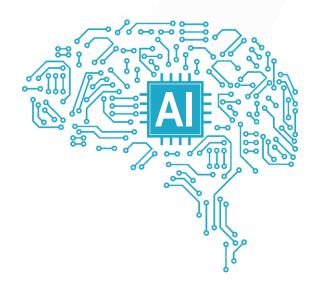




Figure 1.3.5

Business strategy

Al risks are different from traditional software and IT risks

Al risks are broader and more severe, but there is a lack of standardised approaches in managing these risks.



Al is different

Classic Software

Understanding a system

Can we understand the building blocks? Can we understand the composition?

Sources of risk

Technology

- Large input spaces
- Stochastic processes
- Large parameters spaces
- Numeric instability
- Oracle problem

Organizational

- Skills gap
- Challenges to accountability
- Compliance
- Lack of AI policy and efficient scaling strategy
- Stakeholder management

Data

- Inefficient data management and governance strategy
- Data quality issues
- Data usage issues
- Legal challenges

Al Model

- Black box decision-making
- Unwanted bias in prediction
- Concept drift
- Safety and security issues

Processes

- Poor Al lifecycle management
- Lack of controls
- Poor risk management
- Lack of validation and verification

Potential Consequences

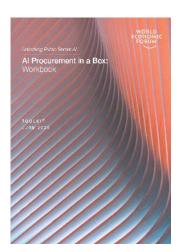
Scale of potential consequences

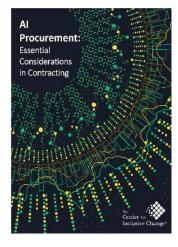
Legal

Reputational

Monetary

Business

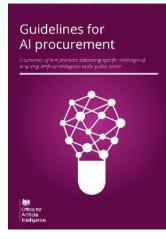

Environment

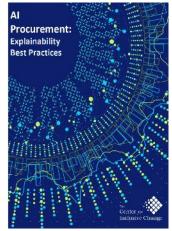


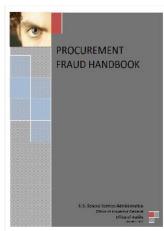
Society

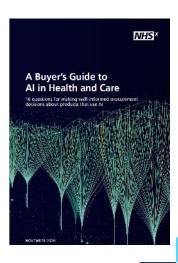
Complex landscape of frameworks, standards, and guidelines

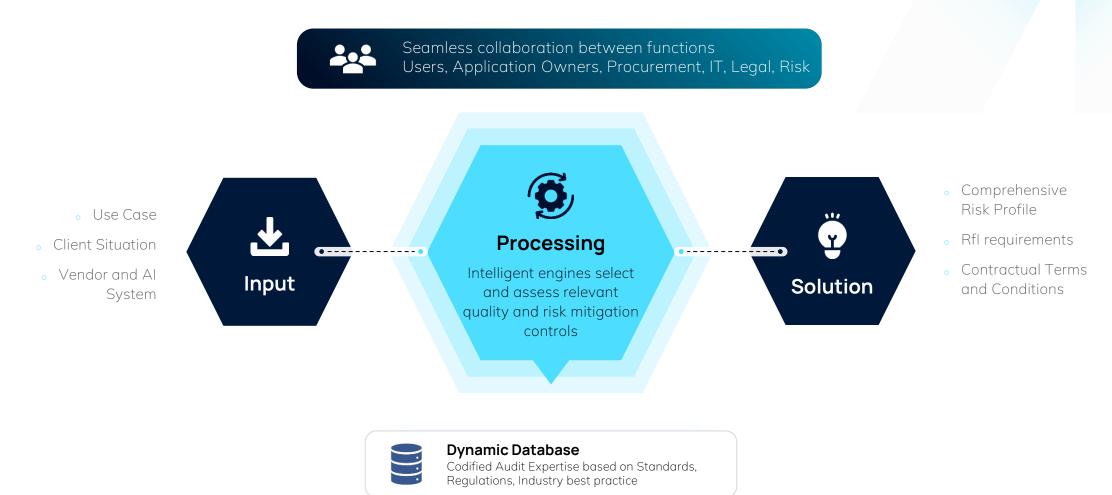
A daunting journey for organisations to navigate these complexities.

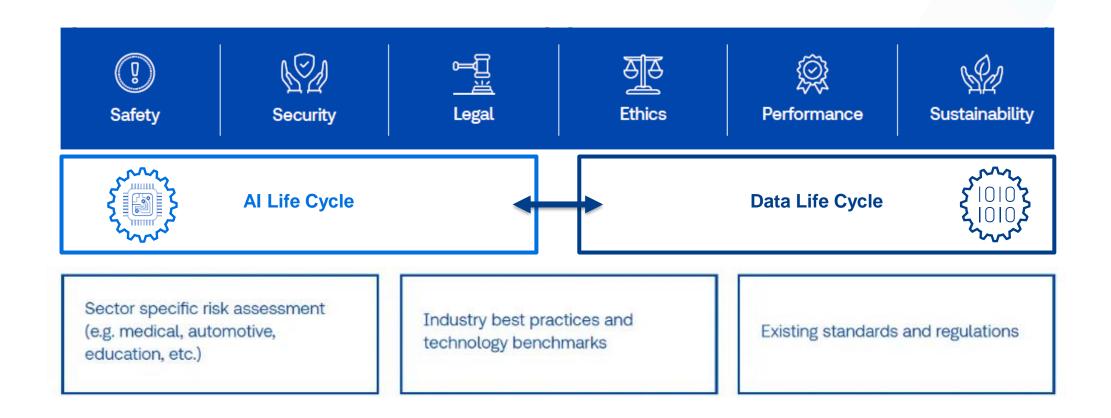






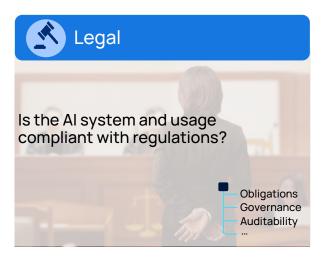





The Solution

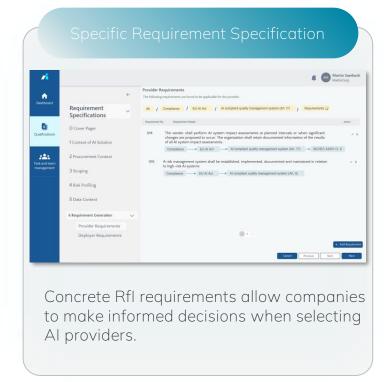
Automated process to mitigate risks and qualify Al systems

Turn use cases into practical, scalable solutions that are compliant, meet high quality, and performance standards.




Al Quality Framework

Al Quality Profile



Outcome of the AIQURIS platform

AIQURIS identifies and quantifies all relevant risks associated with AI use cases

ISO/IEC JTC 1/SC 42

Explanatory notes:

JTC: Joint Technical Committee

SC: Subcommittee **WG**: Working Group

JWG: Joint Working Group TC: Technical Committee TR: Technical Report

WG 1: Foundational Standards

ISO/IEC 42001 Artificial Intelligence - Management System

ISO/IEC 42005 Al system impact assessment

ISO/IEC 42006 Requirements for bodies providing audit and certification of artificial intelligence management systems

ISO/IEC 22989:2022 Artificial intelligence concepts and terminology

ISO/IEC 23053:2022 Framework for Artificial Intelligence (AI) systems using Machine Learning (ML)

WG 4: Use cases and applications

ISO/IEC 5338 Al system lifecycle processes

ISO/IEC 5339 Guidelines for Al applications

ISO/IEC TR 24030 Artificial intelligence (AI) — Use cases

ISO/IEC TR 21221 Beneficial Al systems

ISO/IEC TR 20226 Environmental sustainability aspects of Al systems

ISO/IEC TR 24030:2021 Artificial Intelligence: Use cases

WG 5: Computational Approaches and Computational Characteristics of Al Systems

ISO/IEC 5392 Reference architecture of knowledge engineering ISO/IEC TR 17903 Overview of machine learning computing devices

ISO/IEC TS 4213:2022 Assessment of machine learning classification performance

ISO/IEC TR 24372:2021 Overview of computational approaches for Al systems

JWG 3 (TC215): Al enabled health informatics

ISO/IEC TR 18988 Application of AI technologies in health informatics

WG 2: Data

ISO/IEC 5259-x Data quality for analytics and ML

5259-1 – Overview, terminology, and examples

5259-2 - Data quality measures

5259-3 – Data quality management requirements and guidelines

5259-4 – Data quality process framework

5259-5 - Data quality governance

TR 5259-6 Visualization framework for data quality

ISO/IEC 8183 - Data lifecycle framework

ISO/IEC TR 42103 Overview of synthetic data in the context of Al systems

ISO/IEC 24668:2022 Process management framework for big data analytics

ISO/IEC 20546:2019 Information technology — Big data — Overview and vocabulary

ISO/IEC TR 20547-1:2020 Information technology — Big data reference architecture — Part 1: Framework and application process

ISO/IEC TR 20547-2:2018 Information technology — Big data reference architecture — Part 2: Use cases and derived requirements

ISO/IEC 20547-3:2020 Information technology — Big data reference architecture — Part 3: Reference architecture

ISO/IEC TR 20547-5:2018 Information technology — Big data reference architecture — Part 5: Standards roadmap

JWG1 (SC40): Governance of Al

ISO/IEC 38507:2022 Governance implications of the use of artificial intelligence by organisations

WG 3: Trustworthiness

ISO/IEC 24029-2 Assessment of the robustness of neural networks -

Part 2: Methodology for the use of formal methods

ISO/IEC 23894 Risk Management

ISO/IEC TR 5469 Functional safety and Al systems

ISO/IEC 25059 (SQuaRE) Quality model for AI systems

ISO/IEC TS 25058 (SQuaRE) Guidance for quality evaluation of Al systems

ISO/IEC TS 6254 Explainable Al

ISO/IEC 5471 Quality evaluation guidelines for Al systems

ISO/IEC 6254 Objectives and approaches for explainability of ML models and Al systems

ISO/IEC 8200 Controllability of automated artificial intelligence systems

ISO/IEC 12791 Treatment of unwanted bias in classification and regression machine learning tasks

ISO/IEC TS 12792 Transparency taxonomy of AI systems

 $\ensuremath{\mathsf{ISO/IEC}}$ TS 6254 Objectives and approaches for explainability of ML models and Al systems

ISO/IEC TR 42106 Overview of differentiated benchmarking of Aleystem quality characteristic

ISO/IEC 23894:2023 Guidance on risk management

ISO/IEC TR 24028:2020 Overview of trustworthiness in artificial intelligence

ISO/IEC TR 24027:2021 Bias in Al systems and Al aided decision making

ISO/IEC TR 24029-1:2021 Assessment of the robustness of neural networks - Part 1: Overview

ISO/IEC TR 24368:2022 Overview of ethical and societal concerns

JWG 2 (SC7): Testing of Al-based Systems

ISO/IEC TS 29119-11 Software testing — Part 11: Testing of AI systems **ISO/IEC TS 17847** Verification and validation analysis of AI systems

Selected IEEE Standards

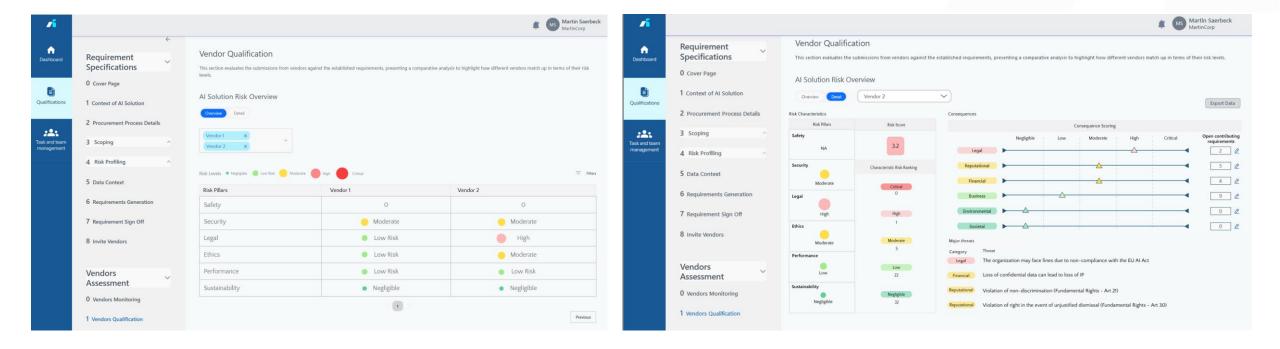
IEEE 2089:2021	Standard for an Age Appropriate Digital Services Framework Based on the 5Rights Principles for Children	https://ieeexplore.ieee.org/document/9627644
IEEE 2247.3	Recommended Practices for Evaluation of Adaptive Instructional Systems	https://standards.ieee.org/ieee/2247.3/7523/
IEEE 2802-2022	Standard for Performance and Safety Evaluation of Artificial Intelligence Based Medical Devices: Terminology	https://standards.ieee.org/ieee/2802/7460/
IEEE 2807.4	Guide for Scientific Knowledge Graphs	https://standards.ieee.org/ieee/2807.4/10571/
IEEE 2817	Guide for Verification of Autonomous Systems	https://standards.ieee.org/ieee/2817/7644/
IEEE 2841-2022	Recommended Practice for Framework and Process for Deep Learning Evaluation	https://standards.ieee.org/ieee/2841/7674/
IEEE 2894-2024	Guide for an Architectural Framework for Explainable Artificial Intelligence	https://standards.ieee.org/ieee/2894/11296/
IEEE 2959	Standard for Technical Requirements of Standard-Oriented Knowledge Graphs	https://standards.ieee.org/ieee/2959/10372/
IEEE 2986-2023	Recommended Practice for Privacy and Security for Federated Machine Learning	https://standards.ieee.org/ieee/2986/10564/
IEEE 3110	Standard for Computer Vision (CV) - Technical Requirements for Algorithms Application Programming Interfaces (APIs) of Deep Learning Framework	https://standards.ieee.org/ieee/3110/11253/
IEEE 3123	Standard for Artificial Intelligence and Machine Learning (AI/ML) Terminology and Data Formats	https://standards.ieee.org/ieee/3123/10744/
IEEE 3156-2023	Standard for Requirements of Privacy-Preserving Computation Integrated Platforms	https://standards.ieee.org/ieee/3156/10834/
IEEE 3157	RecommendedPracticeforVulnerabilityTestforMachineLearningModelsforComputerVisionApplications	https://standards.ieee.org/ieee/3157/10876/
IEEE 7000:2021	Standard Model Process for Adressing Ethical Concerns during System Design	https://ieeexplore.ieee.org/document/9536679
IEEE 7001:2021	Standard for Transparency of Autonomous Systems	https://ieeexplore.ieee.org/document/9726144
IEEE 7002:2022	Standard for Data Privacy Process	https://ieeexplore.ieee.org/document/9760247
IEEE 7003	Algorithmic Bias Considerations	https://standards.ieee.org/ieee/7003/11357/
IEEE 7004	Standard for Child and Student Data Governance	https://standards.ieee.org/ieee/7004/10270/
IEEE 7005:2021	Standard for Transparent Employer Data Governance	https://ieeexplore.ieee.org/document/9618905
IEEE 7007:2021	Ontological Standard for Ethically Driven Robotics and Automation Systems	https://ieeexplore.ieee.org/document/9611206
IEEE 7008	Standard for Ethically Driven Nudging for Robotic, Intelligent and Autonomous Systems	https://standards.ieee.org/ieee/7008/7095/
IEEE 7009	Standard for Fail-Safe Design of Autonomous and Semi-Autonomous Systems	https://standards.ieee.org/ieee/7009/7096/
IEEE 7010:2020	Recommended Practice for Assessing the Impact of Autonomous and Intelligent Systems on Human Well-Being	https://ieeexplore.ieee.org/document/9084219
IEEE P2807.1	Standard for Technical Requirements and Evaluation of Knowledge Graphs	https://ieeexplore.ieee.org/document/10416975
IEEE P2840	Standard for Responsible Al Licensing	https://standards.ieee.org/ieee/2840/7673/
IEEE P2863	Recommended Practice for Organizational Governance of Artificial Intelligence	https://standards.ieee.org/ieee/2863/10142/

Medical use case on AIQURIS platform

Hospital wants to purchase Al-based expert system for mental health diagnosis.

The Product

In-situ and ambulatory epilepsy spike and seizure detection interpretation and analysis


Remote ICU monitoring of nonconvulsive seizures and slowing

The Challenge

The procurement department lacks knowledge of qualifying vendors.

Qualification Results

(for illustration only)

Summary

Al is reshaping industry

Al risks are more complex than for classical software

Risk mitigation starts with procurement of Al

Quality management is required across the life cycle

Al legislation is being enforced

Platform based solutions can automate risk and compliance management

THANK YOU!

Book a demo

DR. ANDREAS HAUSER
CEO
andreas.hauser@aiquris.com

DR. MARTIN SAERBECK
CTO
martin.saerbeck@aiquris.com